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Abstract 

Following the theoretical approach of Bansigir & 
Iyengar [Acta Cryst. (1961), 14, 670-674],  an 
expression for PH -P~2 is developed for a mixed crystal 
of KC1-KBr with equimolar concentration. It was 
assumed that among the six nearest neighbours of the 
K + ion, three are CI- and the other three Br-, and that 
each K + is accompanied by C1- and Br- on either side 

0567-7394/80/040530-06501.00 

in all three principal directions. The expression p~ 1 -- P12 
is used to evaluate the polarizabilities, reversal wave- 
length, ratio and absolute values of strain-optical 
constants p ~1 and Pn .  

Introduction 

Some years ago, an improved theory of piezo-optic 
birefringence in cubic crystals of NaC1 structure was 

© 1980 International Union of Crystallography 
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developed (Bansigir & Iyengar, 1961a; Ethiraj & 
Bansigir, 1973). The theory was later extended to 
CsCl-type crystals (Ethiraj, Krishna Murty & Bansigir, 
1973, 1978a). In view of the recent studies on the 
piezo-optic birefringence in mixed crystals of KC1-KBr 
(Ethiraj, Krishna Murty & Bansigir, 1978b; Kumar, 
Ethiraj & Krishna Murty, 1979), an attempt is made in 
this paper to extend the above theory to the mixed 
crystals of NaCI structure of equimolar concentration 
with the same cation. The theory is worked out for 
equimolar concentration of KC1-KBr specifically and 
is valid for any mixed crystal having the same structure 
and concentration. 

Phenomenological theory 

It is well known that when a cubic crystal with edges 
parallel to [100] [0101 [001] is stressed along the Z axis 
[001], its refractive index changes and varies with 
direction. Hence the refractive index along the direction 
of stress [001] will be different from the refractive index 
along its perpendicular axis [100]. Let the changes in 
the refractive index in these two directions be d G and 
dn x respectively. These changes are related to the strain 
e [along Z] through the following expressions based on 
the phenomenological theory of Pockels (1906), the 
observation being made along the [010] direction, 

dn~ = n~ - n = - p l l ( n 3 / 2 )  5, 

dn x = n x - n = -P l2 (n3 /2 )  5, (1) 

where n is the refractive index of the crystal in the 
unstrained condition and nz and nx are the refractive 
indices of the strained crystal for light vibrating in the Z 
and X directions respectively and P~I and Pl2 are the 
corresponding strain-optical coefficients. 

The unequal changes in the refractive indices 
resulting from the deformation may be attributed to 
change in the density of the crystal and change in the 
polarizability of the ion. 

and (c) Coulomb anisotropy due to the presence of 
positive and negative charges within the cavity. 

The Lorentz-Lorenz anisotropy due to the material 
continuum has been calculated by Mueller (1935) on 
the lines suggested by Havelock (1908). He has shown 
for a medium strained in the Z direction, where the 
strain ellipsoid has the axial ratio 1 : 1 : 1 + 5, that the 
refractive index n x for light vibrating along the X 
direction is given by (Brayborn, 1953) 

3n2x - 1 = 4zrNj• [(n2x + 2) + Kx(n 2 -  1)], (2) 

with similar expressions for light vibrating along the Y 
and Z directions, where K x = Ky = (2/5) 5 and K z = 
--(4/5) e; aj is the polarizability of the ion under 
consideration and Nj the -number of ions per unit 
volume. 

To evaluate the other two anisotropies, (b) and (c), 
we assume a spherical cavity of radius greater than 
V/3y and less than 2y, where 27 is the lattice constant. 
When this cavity is subjected to a uniaxial stress, in the 
direction of one of the edges of the unit cell, the sphere 
changes to an ellipsoid. The centre of the cell is chosen 
as the origin of the coordinate system. In the unit cell of 
a mixed crystal of equimolar concentration of KC10. 5- 
KBr0. 5, we have assumed that among the six nearest 
neighbours of K ÷ ion, three are C1- ions and the other 
three Br- ions, and that each K + ion is accompanied by 
C1- and Br- ions on either side in all three directions 
(Fig. 1). It may be mentioned that this is one of the 
possible configurations suggested by Durham & Haw- 
kins (1951). 

The expression for the field due to dipole anisotropy 
if the incident field is polarized in the Z direction, the 
centre of the cavity being occupied by a positive or 
either of the negative ions, is given by 

Ejza = Djk=(~kz) 5 / f ,  (3a) 

where j represents the ion occupying the centre of the 
cavity, k the ion, the effect of which is to be calculated 
at the centre; d indicates that the field is dipole in nature 
and 7 is the inter-ionic distance. 

(1) C h a n g e  in the  dens i ty  o f  the c r y s t a l  If a unit 
volume of the crystal is stressed along the Z direction, a 
strain 5 along this direction and a corresponding strain 
a5 along the X and Y directions occur, where tr is 
Poisson's ratio. Hence the change in volume would be 
e(1 - 2tr). This volume would bring about a change t~Nj 
in the number of ions per unit volume and is given by 
5(1 - 2 a ) N j ,  where Nj represents the number of ions 
per unit volume. 

(2) C h a n g e  in the po lar i zab i l i t y  o f  the ion. The 
change in the polarizabilities of ions may be attributed 
to the following anisotropies: (a) Lorentz-Lorenz 
anisotropy due to the material continuum; (b) Lorentz- 
Lorenz anisotropy due to the dipoles within the cavity; 

• K÷,O Ct,® Br- 

Fig. 1. The unit cell of the mixed crystal KCI0.5-KBr0. 5. 
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For light polarized in the X direction, the correspond- 
ing expression is 

E j x  d = D j k x ( l l k x  ) e / 7  3, (3b) 

where gkx and Pk~ in the above expressions are dipole 
moments along the X and Z directions respectively; 
DSk x and Djk ~ are numerical values of finite lattice sums 
in the deformed lattice. 

The expression for the field created due to Coulomb 
anisotropy by the charges present in the cavity for light 
polarized in the Z direction is 

fie O~ k 

e,z =Tc,  Z, 
and for light polarized in the X direction is 

(4a) 

f18 Ct k (4b) 
7 , 

where fl is the number of valence electrons, a k is the 
polarizability of a positive or either of the negative ions 
andfk is the oscillator strength of a positive or either of 
the negative ions; Cjkz and Cjkx are numerical constants 
of the lattice. The Coulomb fields are created because, 
under the influence of the incident field, the excess 
charges are displaced by Sp $2, $3, or S k in general, 
giving rise to a dipole whose moment could be 
expressed as  fk e* Sk/47~ = llkz, or #k~, where e* is the 
effective charge (Fr6hlich, 1949); S~, Sz and S 3 are the 
displacements of CI-, K + and Br- respectively. 

The dipole moment of the j th  ion in the presence of 
the resultant field (arising from continuum, dipole and 
Coulomb anisotropies) is given by 

(gjz)id~p = aj Fjz in the Z direction, (5a) 

where 

(gjx)idcp = % Fj~ in the X direction, (5b) 

Fj.z = Eiz + Ejz d + Ejz c + g z e j ,  (6a) 

holds good for mixed cubic crystals, where 

for equimolar concentration. 
Equations (5), (6), (7) and (8) together yield 

a k  + a k f i  

+ - - ( n  2 - 1 )  ~ , (9a) 
3 

/ [(n2+2)( ok ) 
- 5 -  

+ - - ( n 2 - - 1 )  e . 
3 

(9b) 

The values of the D's and C's are calculated by 
assuming that z = 7 + 6z, x = 7 - 6x and y = y - Jy, 
where 6x, 6y and 6z are linear deformations caused by 
the stress and the higher powers of 6x, 6y and 6z are 
negligible. Values thus obtained for the constants are 
given in Table 1. 

Assuming that a = a -  + a+ (where a -  is taken to be 
the effective polarizability of the negative ion) andf~ = 
f2 = f3 = f the change in the polarizabilities along the 
Z and X directions could be _expressed as follows: 

8 
do~ z - -- ~ [A ' (a  -2 - a c t - )  + B ' a  21 

7-2eY [a c' a " r ] ;  
(10a) 

F j x =  Eix + Ejxd + Ejx c + K x P  s, (6b) 

E i is the incident field and Ps is the polarization of the 
medium. 

Alternatively, the dipole moment in (6) could be due 
to the effective polarizabilities asz or asx in the Z and X 
directions under the incident fields Esz and Esx 
according to 

(fljz)idcp = Ctjz Eiz, (7a) 

(,Usx)tacp = a~x Eix . (7b) 

It is assumed that the Lorentz-Lorenz equation for 
the refractive index n in the form 

n 2 -  1 N s a  s (8) 

n 2 + 2  - Z  3 

Table 1. N u m e r i c a l  cons tan t s  

D I I  z = 

D I 2  z = 

D21 z = 

D22 z = 

D I  ix = 

DI2 x -~- 
D2 ix = 
D22 x = 

C l l  z -~- 

C12 z 

C21 z 

C22 z 

C l l  x = 

C i 2  x 

C21 x 

C22 x 

D I 3  z = D 3 l  z = D33 z = 0.0844(o + 1) 
D32 z = -0.7916(o + 1) 
D23~ = -0.3958(o + 1) 
0 . 1 6 8 8 ( t r  + 1) 

Dl3 x = D31 x = D33 x = --0.0422(0 + 1) 
D32 x= 0.3958(0 + 1) 
D23 ~ = 0.1979(o + 1) 
-0-0844(tr + 1) 
C13 z = C31 z = C33 z = 0.0844(tr + 1) 
C32~ = -0.7916(o + 1) 
C23~ = -0.3958(o + 1) 
0-1688(o + 1) 
Ct3 x = C31 x = C33 x = -0.0422(6 + 1) 
Cazx = 0.3958(0 + 1) 
Cz3x = 0-1979(tr + 1) 
-0.0844(0 + 1) 
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da x - [ A " ( a a -  --  a 2) -- B " a  2 ] 
4ny 3 

y + 2o'ey 

sis S-Tf]; (10b) 

A'  = 24 .1372(a  + 1) + 303.4391(o + 1)If, 

B'  = 2 .1214(o + 1) + 26.6690(0 + 1) I f  

A" = 12.0686(o + 1) + 151.7195(a + 1)/f, 

B "  = 1.0607(o + 1) + 13.3345(o + 1)If. 

Taking into account all the anisotropies and the 
density change, we obtain the changes in refractive 
indices along the Z and X directions: 

(1 - 2a)(n 2 -  1)(n 2 + 2) 2(n 2 -  1)2 
dn z = _ 

6n 15n 

A'N~3(n 2 + 2) 2 A' (n  2 + 2)(n 2 -  1) 
+ 0 2 -  0 

226.2857n 75.4286n 

B ' ( n  2 -  1) 2 ] 
+ - - - - - ~ . - S  e 

25 .1429Ny n ]  

N(n2+2)2(y-2eY)[ a° aBr]  

+ 18n~ 3 S l f  S3f ; ( l l a )  

( 1 -  2a)(n 2 -  1)(n 2 + 2) (n 2 -  1) 2 
dn x = _ + - -  

6n 15n 

A"N~3(n 2 + 2) 2 A " ( n  2 + 2)(n 2 -  1) 
_ 02 + 

226.2857n 75.4286n 

B "  (n 2 - 1)2 ] 

N ( n  2 + 2) 2 (y + 2ae,7) [" aC| a"r ] 

[ / ( l l b )  
18n?  S l f  S33fJ; 

where 0 = a+/~a or a - / 7  a. 
From the above expressions for dn z and dn x, one can 

obtain an expression for the birefringence: 

dn  z -- dn  x = [ 
(n 2 1) 2 

L 5n 

( A '  + A " )  NTa(n 2 + 2) 2 
+ 02 

226.2857n 

(A' + A") (n  2 + 2)(n e -  1) 
0 

75.4286n 

(B '  + B" ) (n  2 -  1) 2 ] 
+ ] 

25 .1429N~  n 

U(n 2 + 2)2(0 - 1) [ a  cl aBr ]  

+ 9n~2 S l f  S 3 f J  8 

N ( n  2 + 2)2[ a cl aBr ] 

+ 9 n ~  L -ff~-lf S 3 f  . (12) 

It is interesting to note that the birefringence does not 
become zero in the undeformed state (e = 0) but is 
equal to 

N(n2 + 2)2 [ a Cl a ar ] 

9 n y  3 [-ffl-lf S , f ] "  

However, if we consider an adjacent unit cell to the one 
considered, the birefringence in the undeformed state is 
found to be opposite in sign but equal in magnitude. 
Thus the net birefringence for the crystal as a whole is 
zero in the undeformed state. 

The expression for (dn z - dnx)  was worked out for 
all the eight possible arrangements of C1- and Br-  ions 
with the assumed symmetry regarding the distribution 

Table 2. Varia t ion  o f  po lar izabi l i t i es  wi th  wave l eng th  

Effective 
polarizability 

of the 
Brewster Polarizability negative Ratio of the 

Refractive constant of K + ions strain-optical 
Wavelength index Coo I x 10 ~2 (P,-P~2) a + x 1030 agn-x 1030 constants 

(nm) n m2/N × 102 m3 m3 P12/Pn 
560 1.512 2.93 5.1757 0.465 4-471 0.82 
520 1.516 2.68 4.6967 0.467 4.498 0-83 
480 1.520 2.40 4.1729 0.469 4.535 0.85 
450 1.525 2.23 3. 8393 0.472 4.569 0.86 
400 1.535 1.94 3. 2752 0.478 4. 643 0.88 
360 1.547 1.70 2.8037 0.486 4.731 0.90 
320 1.566 1.30 2. 0669 0.498 4. 866 0.92 
290 1.588 0.33 0.5032 0.510 5.023 0.99 
270 1. 609 --0.70 -- 1. 0261 0.522 5-174 1.05 
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of these ions in the unit cell, and the birefringence in all 
cases is given by 

-- dnx = [ - (n2 5n- 1)2' + (A' + A")226.2857nNTa(n2 + 2)2 02 dnz 

(A'+ A")(n 2 + 2)(n 2 -  1) 
- -  0 

75.4286n 

(B' + B")(n 2 -  1) 2 ] 
+ ] e. (13) 

25.1429N7 a n 

From (1) and (13), the expression for Pll --PIE may 
be written as 

P a ~ - P I 2 =  (2/n3)(dn~ - dnx)/e. (14) 

A p p l i c a t i o n s  

(1) Polarizabilities o f  the ions and reversal wavelength 

From (14), the polarizability of the positive ion and 
the effective polarizability of the negative ions are 

10-95 

10.9 

~" 10.8 

N 

0.7 

.o 

10.6 

10.5 i ) i i i i i 
240 280 320 360 400 440 480 520 

Wavelength (nm) 

Fig. 2. Ratio ofpolarizabiHties, a/a+, versus wavelength. 

I 

560 

evaluated at different wavelengths and are given in 
Table 2. In evaluating the polarizabilities, the value of 
the strain-optical constants (P~I - P n )  are calculated 
using the expression, C001 = (n3/2) (P~I - -Pn) / (C~  -- 
C~2 ). The data on the Brewster constant Coo I (Kumar, 
Ethiraj & Krishna Murty, 1979) and the elastic 
constant (C~ - C~2) (Slagle & McKinstry, 1967) are 
taken from the literature. The data on the refractive 
index for the mixed crystal was evaluated using the 
Lorentz-Lorenz equation (Ethiraj, 1976). 

The effective polarizability of the negative ions 
increases with decrease of wavelength as is observed in 
the case of pure crystals (Ethiraj, Krishna Murty & 
Bansigir, 1978a). The variation of the polarizability of 
the positive ion is, however, small. The polarizabilities 
of C1- and Br- ions in KC1 and KBr for sodium light 
are 3.694 and 4.739 respectively (Bansigir & Iyengar, 
196 lb). The effective polarizability of the negative ion 
obtained in the present investigation is comparable with 
them. 

For evaluating the reversal wavelength (wavelength 
at which p~a = Pn), the ratio of the polarizabilities, 
a/a +, was plotted against wavelength as shown in Fig. 
2. With p~m = P~2 in (14), a/a + was calculated and the 
wavelength corresponding to this value was obtained 
from Fig. 2. The reversal wavelength so obtained is 
282.5 nm which is in good agreement with the 
experimental value 282 nm (Kumar, Ethiraj & Krishna 
Murty, 1979). 

(2) Ratios of  the strain-optical constants and their 
absolute values 

From (1) and the expressions for dn~ and dnx, the 
ratio of the strain-optical constants, P ] 2 / P l l  = dnx/dnz, 
was evaluated at different wavelengths; the results are 
given in Table 2. By combining the values of (P]I -- 
Pn)  and PI2/P11, the absolute values of pl 1 and p n  were 
evaluated and their variation with wavelength is shown 
in Fig. 3. 

Our thanks are due to Professor K. G. Bansigir for 
useful discussions. One of us (GSK) is grateful to the 
University Grants Commission, New Delhi for award- 
ing a Teacher Fellowship under the Faculty Improve- 
ment Programme. 

0"3 f 
-~ 0-25 

"~ 0.2 t 
240 

I I I I 

280 320 360 400 

P I I  
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I I I t 

440 480 520 560 
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Fig. 3. Variations of pl I andpl 2 with wavelength. 
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Abstract 

A new method is presented to overcome the cumber- 
someness of the existing methods in the derivation and 
tabulation of the results for general tensors when the 
elements of the group do not all simply permute 
coordinates apart from sign; here the method is 
described for the generator 3 z. The method uses a con- 
jectured, optimal choice of independent components 
(verified up to rank 8) and a new procedure to obtain 
the expressions of the dependent components. The inde- 
pendent components adopted consist of sets of compo- 
nents related by appropriate permutations of compo- 
nent indices: this choice is suggested by the similarity of 
transformation properties of these components. The 
procedure for the determination of the expressions of 
dependent components is based on the representation 
of all components by suitable numerical vectors. The 
procedure allows the exploitation of the restrictions on 
the general form of the expressions which follow from 
the optimal choice of independent components. The 
method is applied to the derivation of the schemes of 
general tensors up to rank 8 in group 3(3z). The 
simolification provided by the method is considerable. 

* Supported in part bv a NATO Research Grant. 
Part of the 'Tesi di Perfezionamento in Fisica' to be submitted 

by C. Ripamonti to the University of Genoa. 
Presented at the Fourth European Crystallographic Meeting 
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liminary report was presented at the 1975 Spring Conference of the 
Crystallography Group of the British Institute of Physics (Lan- 
caster, 2-4 April 1975), paper no. 28. 
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The method permits, for instance, the complete deter- 
mination of the scheme for the 2 s components with 
only x and y indices of a general eighth-rank tensor by 
solving five systems of linear inhomogeneous equations, 
one 7 by 7, two 6 by 6 (with identical matrices of 
coefficients), one 5 by 5 and one 3 by 3. Furthermore, 
and perhaps more importantly, the resulting scheme 
can be completely represented by ten distinct 
expressions (and their permutations). Several errors are 
pointed out in the table of Chung & Li [Acta Cryst. 
(1974), A30, 1-13] for the (non-tensorial) array for 
fourth-order elasticity in group 3(3z). 

1. A synopsis of the existing methods 

The field of tensor properties of crystals is probably the 
oldest chapter of solid-state physics, and thus the 
history of the methods used to study the effect of the 
rotational symmetry of crystals on their tensor proper- 
ties is a long and involved one. Here we will try to focus 
on the main ideas of these methods. 

A broad distinction can be made between direct 
methods and indirect methods. The direct methods 
work with the tensor as such, while the indirect 
methods work with the cause-effect relationship 
defining the tensor or with the expression of a thermo- 
dynamic potential involving the tensor. 

The typical direct method imposes invariance on 
each tensor component, i.e. imposes equality between 
each tensor component and its transforms under all the 
symmetry elements of the crystal. The method, first 
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